您现在的位置: 主页 > 通讯技术 > 一种微波探测声音方法的实现 -
本文所属标签:
为本文创立个标签吧:

一种微波探测声音方法的实现 -

来源: 网络用户发布,如有版权联系网管删除 2018-11-11 

[导读]摘要:提出了一种微波探测声音(微波窃听)的方法,并简要介绍了它的原理和实现方式。通过微波振荡器产生的微波,经天线发射后投射到待测声源处,被声源处的音频信号调制后反射回来,由天线接收后输送到微波晶体检波器

摘要:提出了一种微波探测声音(微波窃听)的方法,并简要介绍了它的原理和实现方式。通过微波振荡器产生的微波,经天线发射后投射到待测声源处,被声源处的音频信号调制后反射回来,由天线接收后输送到微波晶体检波器检波,再由小电流放大、电压和功率放大等处理,还原出声源处的声音信号,达到探测声音的目的。
关键词:微波探声;幅度调制;检波

0 引言
    微波在现实生活中有多种用途,例如:微波通信、微波雷达、微波测速等。本文介绍一种以微波作为载波来实现探测声音的实验方法,并且在实验室进行了测试。从实验结果看,能达到利用微波探测声音的目的。本实验原理简明,所用微波器件为实验室常见的微波器件,电路结构简单,易于实现。

1 实验原理
    微波探测声音的原理与广播类似,它利用高频的微波信号来“载驮”所要传送的声频信号,也就是高频微波信号的振幅随所传送的声频信号的变化而变化。高频微波信号为“载波”,调制微波的声频信号为“调制信号”。经过调制后的高频信号为调幅波。
    a.jpg
    式(1)和(2)中Ω、F分别为调制信号的角频率和频率。载波为远高于调制信号频率的正弦波。
    调制的作用是使载波的振幅Vcm随调制信号vΩ而相应的变化,从而得到调幅波。调幅波振幅变化的轨迹即波峰点的连线称为包络线。调幅波包络线的瞬时值为:
    b.jpg
    式(4)中,VΩm/Vcm称为调幅指数,用ma表示。
    语言、音乐等都不是单音频信号,而是由很多不同频率的波合成,它们不是标准的正弦信号。对于非正弦的周期信号,可以分解为多个不同频率的正弦波信号。典型的调幅波的频率成分,可以由它的瞬时值表示式推导出来,即
    c.jpg
    这表明单音信号(即调制信号是正弦信号)的调幅波由三部分频率分量组成,即载波分量ω0、上边频分量ω0+Ω和下边频分量ω0-Ω。
    调幅信号的解调是振幅调制的反过程,是从高频已调信号中取出调制信号,常将这种解调称为检波。实现这种解调作用的电路称为振幅检波器。检波器由高频输入回路、非线性器件和低通滤波器三部分组成。因振幅调制信号由载波频率ω0和边频(ω0±Ω)组成,没有调制信号本身的频率分量Ω,但载频ω0与上边频(ω0+Ω)或下边频(ω0-Ω)之差可得到Ω。为了取出原调制信号频率Ω,从高频输入回路输入的高频已调信号,通过非线性器件产生新的频率分量,其中就包含所需的Ω分量,再用低通滤波器滤除不需要的高频分量,即可得所需的声音信号。

2 实验装置与基本器件
    本实验装置与基本器件组成图如图1所示。微波振荡器产生的微波,经隔离器和环形器由天线投射到待测声源处,作为载波的微波被声源处的音频信号调制后被反射回来,由天线接收(发射、接收天线为同一天线),再经过微波晶体检波器检波和电流、电压及功率放大,最后还原出声源处的音频信号。实验装置中所用到的振荡器、隔离器、环形器、角锥天线和晶体检波器均为实验室中常见的3厘米波段(X波段)的微波器件。

本文引用地址: http://www.21ic.com/app/rf/201202/105344.htm

d.jpg



3 电路结构
    本实验所用的前置放大电路如图2所示。它包括两级,第一级由OP07构成的弱电流放大电路。由于一般情况下,检波后得到的电流形式的音频信号很微弱,为了达到较好的放大效果,实验中加了一级弱电流放大电路。根据运放电路的相关知识可知,输入电流I1流经R2和R3的流I2和I3的关系为e.jpg,即输出电流的放大倍数为f.jpg倍;第二级用NE5532运放构成一个低噪声的电压放大电路。NE5532是一种高速低噪声运算放大器。它的带宽为10 MHz,相比大多数标准运算放大器,它显示出更好的噪声性能,更高输出驱动能力和小信号带宽。

g.jpg


    自动增益放大电路(AGC)如图3所示。其基本原理是当输入信号幅度较大时,AGC电压控制可变增益放大器的放大倍数减小,当输入信号幅度较小时,AGC电压控制可变增益放大器的放大倍数增加。

h.jpg


    图3中,输入信号从运放F1的同相端输入,二极管VD对运放F1的输出信号整流后,经一个∏形滤波电路得到一个负向AGC电压,这一电压经过运放F2放大后送往场效应管3DJ6的栅极。当输入信号幅值较大时,相应地得到较大的AGC电压,运放F2输出较大的负压至场效应管3DJ6的栅极,增大了场效应管3DJ6的源漏极间的电阻,从而减小了运放F1的放大倍数;反之,当输入信号的幅值较小时,AGC电压也很小,运放F2输出也很小,场效应管3DJ6的源漏极间的电阻很低,使运放F1得到较大的放大倍数。

i.jpg


    功放采用低电压音频功率放大器LM386,电路图如图4所示。其电路电压增益可调,外接元件少,总的谐波失真小,对低电压信号的放大效果良好,且驱动能力强,输出信号可直接驱动8 Ω的扬声器。

4 实验结果及分析
    根据所设计的实验方案,我们在实验室制作了相关电路和进行了实验测试。实验结果如图5示:

j.jpg


    由图5可知,在图5(a)中,声源频率为5 kHz的正弦波,接收解调后信号较好的还原回正弦信号;在图5(b)中,声源为通常的声音信号时,接收解调后的信号能够较清晰的还原为原来的声音信号,此时输出端接音频喇叭能还原出声源处的声音。

5 结束语
    通过在实验室中的实验实测,由接收电路得到的信号能较好地还原原来的音频信号,证明本实验方法可行。本实验可作为一种趣味性或演示性实验开设,对拓展学生的知识面、提高学生的动手能力,加深学生对有关知识的理解有很好的帮助。



              查看评论 回复



嵌入式交流网主页 > 通讯技术 > 一种微波探测声音方法的实现 -
 

"一种微波探测声音方法的实现 -"的相关文章

网站地图

围观()