来自公众号:技术让梦想更伟大 来源:网络,整理:李肖遥
一、内存大话题
1.0、内存就是程序的立足之地,体现内存重要性。
1.1、内存理解:
内存物理看是有很多个Bank(就是行列阵式的存储芯片),每一个Bank的列就是位宽 ,每一行就是Words,则存储单元数量=行数(words)×列数(位宽)×Bank的数量;通常也用M×W的方式来表示芯片的容量(或者说是芯片的规格/组织结构)。
M是以位宽为单位的总容量,单位是兆 ,W代表位宽, 单位是bit。计算出来的芯片容量也是以bit为单位,但用户可以采用除以8的方法换算为字节(Byte)。比如8M×8,这是一个8bit位宽芯片,有8M个存储单元,总容量是64Mbit(8MB)。
1.2、c语言中其实没有bool类型:以0表示假,非0表示真,则在内存存储是以int型存放的。如果想要表示真假,可以用int/char型做替换,在c++中就有bool x=true/false;
1.3、内存对齐:内存对齐(提高访问效率速度,编译器一般默认是4字节对齐)
1.4、char/int/short/long/float/double型:放在内存的长度和解析作用。(int *)0,使0地址指向一个int型。又比如0000111010101可以解析成int型也可以解析成float型。
1.5、Linux内核是面向对象的,而c语言是面向过程的,但可以用结构体内嵌指针变成面向对象。如
struct student{
int age; //变量
int lenth; //将相当于一个类,有变量有函数
char *name;
void (*eat)(void); //函数指针
}
1.6、栈的理解:
(1) 运行时自动分配&自动回收:栈是自动管理的,程序员不需要手工干预。方便简单。(表现在汇编代码,编译时,会自动编译成汇编码实现函数调用完立即改变栈顶)
(2) 反复使用:栈内存在程序中其实就是那一块空间,程序反复使用这一块空间。(硬件上有个寄存器,用来存放栈的栈顶地址,栈是有大小的空间)
(3) 脏内存:栈内存由于反复使用,每次使用后程序不会去清理,因此分配到时保留原来的值。
(4) 临时性:(函数不能返回栈变量的指针,因为这个空间是临时的)
(5) 栈会溢出:因为操作系统事先给定了栈的大小,如果在函数中无穷尽的分配栈内存总能用完。栈的操作(怎么出栈怎么入栈)是由具体硬件来干预,程序员只要明白原理就可以了,但是要给相应的栈寄存器赋值。当调用函数时,变量会自动放在栈中(入栈)当函数调用完后,栈会自动出栈.
( 6 ) 栈的 "发展"有四种情况,满增栈,满减栈,空增栈,空减栈,至于是那种要根据编译器决定,而s5pv21 是满减栈。
1.7、堆的理解:
(1)操作系统堆管理器管理:堆管理器是操作系统的一个模块,堆管理内存分配灵活,按需分配。
(2)大块内存:堆内存管理者总量很大的操作系统内存块,各进程可以按需申请使用,使用完释放。
(3)脏内存:堆内存也是反复使用的,而且使用者用完释放前不会清除,因此也是脏的。
(4)临时性:堆内存只在malloc和free之间属于我这个进程,而可以访问。在malloc之前和free之后都不能再访问,否则会有不可预料的后果。
(5)程序手动申请&释放:手工意思是需要写代码去申请malloc和释放free。(记住:不要把申请的地址给搞丢了, 不然自己用不了,也释放不了)
申请一段内存,可以是:
malloc(10*sizeof ( int ) );
原型:
void *malloc(size_t size);
//指针函数 size_t是宏定义int 都是便于可移植性 ,返回一个内存地址,void *可以看出,希望申请的内存用来存放什么就强制类型什么。
calloc( 10,sizeof ( int ) ); 原型:void *calloc(size_t nmemb, size_t size);// nmemb个单元,每个单元size字节void *realloc(void *ptr, size_t size);// 改变原来申请的空间的大小的ptr是原来申请内存的指针,size是想要重新申请内存的大小使用就是*(p+1)=12 ; *(P+3)=110;
申请失败返回NULL,申请成功返回一个地址,申请之后一定要检验(NULL!=p)用完一定要 free ( p ) ;释放后不是不能用,是不应该使用了。可以给它“洗盘子‘,p=NULL;
其实申请的内存并不能真正改变大小,原理是先重新申请一段内存,然后把原来申请的内存上的内容复制到新的内存上,然后释放掉原来的内存,返回新的指针。
(6) 在申请内存时,malloc(0)其实也是成功的,因为系统规定少于一定数目的大小,都申请规定的大小,如在win32系统下申请少于32字节的地址,最后申请到的空间是32字节,在朱老师视频中申请少于16字节的地址,最后申请到的是16字节,至于规定多少字节,由具体的系统而言。
(1)代码段:存放代码二进制、常量(char *p="linux",则”linux“存放在代码段,是不可更改的)
(2) 数据段: 存放非0全局变量、静态局部变量(局部只属于函数的,不是整个程序的)
(3) bss : 存放为0的全局变量/为0的静态局部变量、存放未初始化全局变量/静态局部变量
注意:const int a=9; 有两种存放方式:第一种确实存放在代码段,让a不能修改,第二种是仍然存放在数据段中,让编译器来判断,如果有改变的代码就会报错。至于那种,是不确定的,像单片机就属于第一种。
1.9、《1》一个源文件实际上是以段为单位编译成连接成可执行文件(a .out );这个可执行文件总的说是分为数据段,代码段,自定义段,数据段还可以细分成 .bbs 段。而杂段会在执行的时候拿掉。所以a.out分为杂段,数据段(存放的是非0全局变量).bbs段,代码段。
《2》内存实际上被划分了两大区域,一个是系统区域,另一个是用户区域,而每一个区域又被划分成了几个小区域,有堆,栈,代码区,.bbs区,数据区(存放的是非0全局变量)。
《3》对于有操作系统而言, 当我们在执行a.out可执行文件时,执行这个文件的那套程序会帮我们把杂段清掉,然后把相应的段加载到内存对应的段。对于裸机程序而言,我们是使用一套工具将a.elf的可执行程序给清掉了所有段的符号信息,把纯净的二进制做成.bin格式的烧录文件。所以我们加载到内存的程序是连续的,也就是说代码段和数据段、.bbs段都是连续的。当然,栈空间是我们自己设置的。而且在裸机中我们不能使用malloc函数,因为我们使用的只是编译器、连接器工具没有集成库函数,没有定义堆空间区。
《4》大总结多程序运行情况:在Linux系统中运行cdw1.out时,运行这个文件的那套程序会帮我们把相应的段加载到内存对应的段。然后操作系统会把下载到内存的具体物理地址与每条命令(32位)的链接地址映射到TTB中(一段内存空间),当我们又运行cdw2.out时,同样也像cdw1.out一样加载进去,并映射到TTB表中。而且这两个.out文件默认都是链接0地址(逻辑),当cpu发出一个虚拟地址(Linux中程序逻辑地址)通过TTB查找的物理地址是不一样的。所以对于每一个程序而言,它独占4G的内存空间,看不到其他程序。
二、位操作
2.1 ~(0u)是全1;
2.2 位与& 位或 | 位取反~ 位异或^
2.3、位与、位或、位异或的特点总结:
位与:(任何数,其实就是1或者0)与1位与无变化,与0位与变成0
位或:(任何数,其实就是1或者0)与1位或变成1,与0位或无变化
位异或:(任何数,其实就是1或者0)与1位异或会取反,与0位异或无变化
2.4、左移位> C语言的移位要取决于数据类型。
对于无符号数,左移时右侧补0(相当于逻辑移位)
对于无符号数,右移时左侧补0(相当于逻辑移位)
对于有符号数,左移时右侧补0(叫算术移位,相当于逻辑移位)
对于有符号数,右移时左侧补符号位(如果正数就补0,负数就补1,叫算术移位)
2.5、小记:常与 1 拿来 做位运算。让他取反、移位 得到想要的数。
2.6、直接用宏来置位、复位(最右边为第1位)。置位置1,复位置0 ;
#define SET_NTH_BIT(x, n) (x | ((1U) |