彩色电视机开关电源设计解析 - 模拟电源 -
作者曾多年从事彩电开关电源研制,本文结合过去的工作经验,试图从彩色电视机电源应用角度,谈谈反激型变换器基本原理和工作方式,电视机对反激变换器的独特要求,以及单管反激变换器的工程设计方法及调试经验等。祈望有助于业界人士和广大电视机维修人员的工作。
2 反激型变换器原理和两种工作方式
单管反激型变换器电路及其工作波形如图1所示。当Q1被输入脉冲驱动而导通时,流过Np绕组的初级电流会以斜率为VDC/Lp线性上升,在导通时间(ton)结束时刻,初级电流i1已升到峰值
I1P=
×ton (1)
图1 基 本 电 路 及 波 形
同时磁芯内存储有能量
E=
(2)当Q1截止时,磁芯内储能向次级释放,因为电感内的电流不能突变,所以在截止开始瞬间,初级电流传递到次级并使次级电流峰值为
I2P=I1P
(3)这个电流会直接向输出电容充电。经过几个周期后,次级直流电压VO已建立,此时伴随Q1截止,I2会从NS流出,其值为
i2=I2P-
t (4)式(4)表明,在截止期间的i2是线性下降的,它反映了磁芯储能释放情形。根据磁芯储能是否全部释放可导出反激型变换器的连续与不连续两种工作方式,事实上随着输入市电电压或者电视机接收负载(例如音量,辉度)的变化,电视机电源都有可能经历这两种工作方式。
1)不连续工作方式如果市电电压较低或者电视机接收负载过重,就使次级电流i2在Q1的下一次导通之前已下降到零,这表明所有磁芯储能已传送到负载,此后Q1的每一次导通,相应的初级电流i1及磁通? 都要从零开始上升。这种工作状态叫不连续方式,其波形如图2所示。
图2 不 连 续 方 式 波 形
现时,在一个周期T内从电源VDC输入的功率Pi为
Pi=
= (5)假定电源的效率为80%,即
Pi=
=1.25 = (6)由式(6)得输出电压NO为
VO=VDCton
(7)式(7)说明:
(1)如果图1电路工作在不连续方式,若不小心将负载RL开路,则有可能因输出电压VO过大而烧坏管子,这种情况在调试时是时有发生的;
(2)即使图1能正常工作,其输出电压VO亦会随着输入电压VDC和负荷RL的变化而变化,极不稳定。为了得到稳定的输出电压,需要象图3那样加入一个反馈稳压电路,它是由输出电压采样分压器,EA误差放大器和一个由直流电压控制的可变宽度脉冲发生器组成。从式(7)可见,此反馈电路必须能够保证在VDC或RL升高时,降低ton,或者在VDC或RL下降时升高ton。
图3 带 反 馈 稳 压 电 路 的 变 换 器
功率管Q1所承受的最大电压应力的计算:
在Q1截止期间因有次级电流i2流过NS,在NS上产生的电压幅值近似为输出电压VO(忽略二极管正向压降及引线损耗),此电压反映在初级绕组NP上产生感应电动势VNP:
VNP=
VO (8)因此截止时功率管Q1所承受的最大电压应力为
VDSmax=VDCmax+VNP=VDCmax+
VO (9)在实际运用时,Q1所承受的最大电压应力不仅限于VDSmax,同时还要加上由变压器漏感所带来的附加电压尖峰(估计约为0.3VDC),而且在选双极型管时,需要注意以上二者之和应该比所选管的额定值VCEO小30%,这样才有足够的安全余量。
2)连续工作方式如果市电电压升高或者接收负载减轻,这使次级电流i2在Q1的下一次导通到来之时仍未下降到零,磁芯仍含有一部分储能,它会反映到初级,使此后Q1的每一次导通,相应的初级电流i1及磁通φ都不是从零而是从一个恒定值开始上升。这种工作状态叫连续方式,其波形如图4所示。
图4 连 续 方 式 波 形
应该指出,根据磁通复位原则,在连续方式中会存在一个磁通平衡点φO,在φO的基础上让导通时的磁通增加量Δφ1等于截止时磁通减少量Δφ2,故有
VDCton= VOtoff
得出
VO=
VDC= (10)由式(10)可知,如果图1的电路工作在连续方式中,则输出电压VO只取决于匝数比NS/NP,时间比ton/toff以及输入直流电压VDC,而和负载RL无关。
同样地,实际的电源应该象图3那样加入反馈电路,那么由式(10)可知,这个电路的作用应该是当输入直流电压VDC升高时,让ton减少,或者当VDC减少时,让ton升高,以便保持输出电压VO不变。
如果将式(8)代入式(10),则有
VDCton=VNPtoff (11)
由此可进一步简化式(9),即截止时功率管Q1所承受的最大电压应力可化为
VDSmax=VDCmax+
VO=VDCmax+ VDCmax= (12)考虑功率管还要承受由变压器漏电感所引起的电压尖峰(其值约为0.3VDCmax)。因此实际VDSmax′应为
VDSmax′=VDSmax+0.3VDCmax=1.3VDCmax+(NP/NS)VO (13)
3)实例
有一29吋电视机其最大输入市电电压为AC 264V,变压器NP=32匝,NS=28匝,VO=140V,则由式(13)得出VDSmax′=1.3×
×264V+160V=645V。设计时,对MOSFET管要选择其VDS耐压≥VDSmax′的,下面介绍连续方式的输入、输出电流与负载功率的关系。图5示出连续方式的初级和次级电流波形。其输出功率等于输出电压乘次级电流脉冲的平均值。现定义ICSR为次级电流脉冲线性斜坡部分的中点值,故有
PO=VOICSR
=VOICSR(1-ton/T) (14)ICSR=
(15)图5中的初级电流脉冲线性斜坡部分的中点值ICPR,则由Pi=1.25PO=VDCICPR
得ICPR=
(16)
图5 连 续 方 式 中 的 初 次 级 电 流 台 阶
需要注意的是,连续方式的出现刚好在初级电流斜坡出现台阶的时候,由图5可见当ICPR升高到等于斜坡幅度ΔI1P的一半时,电流台阶开始出现,此时的ICPR在连续方式中是最小的,结合式(16)有
ICPRmin=
ΔI1P=或者
ΔI1P=
(17)上式的tonmax可由式(11)在给定的最小VDCmin下求出。又因ΔI1P=(VDCmin)ton/LP故有
LP=
= (18)利用式(10)~(18),可以计算工作于连续方式下的反激型变换器各相关参数值。需要指出的是,分别按二种方式来设计反激型变换器,会得出很不同的结果。例如文献[1]曾使用不连续与连续两种工作方式分别设计一个工作于50kHz的DC/DC反激变换器,假定其输入DC电压为38V,输出5V,输出功率为50W,则对初级电感LP以及初次级电流会得出如下表1所示的很不同结果。
表1 不同工作方式下的反激型变换器设计比较
计算结果 | 工作于不连续方式 | 工作于连续方式 |
---|---|---|
初级电感LP/μH | 52 | 791 |
初级峰值电流/A | 6.9 | 2.77 |
次级峰值电流/A | 62.0 | 24.6 |
ton/μs | 9.49 | 11.86 |
toff/μs | 6.5 | 8.13 |
由表1可见反激型变换器的两种工作方式会有很不同的运行特性。不连续方式的优点是对负载电流或输入电压的突然变化反应迅速,这使相应的输出电压的瞬时改变较小。但其缺点是次级峰值电流为连续方式的2~3倍(相对于同一个输出电流平均值而言)。因此在开关管截止之初,不连续方式会有一个较大的瞬态输出电压尖峰,这将要求一个较大的LC滤波器去消除它。在开关管截止之初形成的过大的次级峰值电流同时引起RFI问题。即便对于中功率输出,由于进入输出母线电感的di/dt值很大,它在输出地线上生成很严重的噪声尖峰。由于不连续方式的次级电流有效值比连续方式高出近两倍,这就要求次级导线线径较大以及有一个纹波电流额定值较大的输出滤波电容。同时次级输出整流二极管也必须耐受高的温升。另外初级峰值电流也大于连续方式的两倍,如图2所示,在电流平均值相同的情况下,不连续方式的三角形电流波形其峰值显然比连续方式的梯形波形的峰值为高。其结果就要求不连续方式的开关管有较高的电流额定值,造成成本增加。同样,较高的初级电流也会带来严重的射频干扰(RFI)问题。
尽管不
查看评论 回复