您现在的位置: 主页 > 上位机技术 > python > 非线性方程组求解
本文所属标签:
为本文创立个标签吧:

非线性方程组求解

来源:网络整理 网络用户发布,如有版权联系网管删除 2018-08-13 


非线性方程组求解

optimize库中的fsolve函数可以用来对非线性方程组进行求解。它的基本调用形式如下:

fsolve(func, x0)

func(x)是计算方程组误差的函数,它的参数x是一个矢量,表示方程组的各个未知数的一组可能解,func返回将x代入方程组之后得到的误差;x0为未知数矢量的初始值。如果要对如下方程组进行求解的话:

  • f1(u1,u2,u3) = 0

  • f2(u1,u2,u3) = 0

  • f3(u1,u2,u3) = 0

那么func可以如下定义:

def func(x):
u1,u2,u3 = x
return [f1(u1,u2,u3), f2(u1,u2,u3), f3(u1,u2,u3)]

下面是一个实际的例子,求解如下方程组的解:

  • 5*x1 + 3 = 0

  • 4*x0*x0 - 2*sin(x1*x2) = 0

  • x1*x2 - 1.5 = 0

程序如下:

from scipy.optimize import fsolve
from math import sin,cos

def f(x):
x0 = float(x[0])
x1 = float(x[1])
x2 = float(x[2])
return [
5*x1+3,
4*x0*x0 - 2*sin(x1*x2),
x1*x2 - 1.5
]

result = fsolve(f, [1,1,1])

print result
print f(result)

输出为:

[-1 -0.6        -2.5       ]
[0.0, -9.1260332624187868e-14, 5.3290705182007514e-15]

由于fsolve函数在调用函数f时,传递的参数为数组,因此如果直接使用数组中的元素计算的话,计算速度将会有所降低,因此这里先用float函数将数组中的元素转换为Python中的标准浮点数,然后调用标准math库中的函数进行运算。

在对方程组进行求解时,fsolve会自动计算方程组的雅可比矩阵,如果方程组中的未知数很多,而与每个方程有关的未知数较少时,即雅可比矩阵比较稀疏时,传递一个计算雅可比矩阵的函数将能大幅度提高运算速度。笔者在一个模拟计算的程序中需要大量求解近有50个未知数的非线性方程组的解。每个方程平均与6个未知数相关,通过传递雅可比矩阵的计算函数使计算速度提高了4倍。

雅可比矩阵

雅可比矩阵是一阶偏导数以一定方式排列的矩阵,它给出了可微分方程与给定点的最优线性逼近,因此类似于多元函数的导数。例如前面的函数f1,f2,f3和未知数u1,u2,u3的雅可比矩阵如下:

使用雅可比矩阵的fsolve实例如下,计算雅可比矩阵的函数j通过fprime参数传递给fsolve,函数j和函数f一样,有一个未知数的解矢量参数x,函数j计算非线性方程组在矢量x点上的雅可比矩阵。由于这个例子中未知数很少,因此程序计算雅可比矩阵并不能带来计算速度的提升。

# -*- coding: utf-8 -*-
from scipy.optimize import fsolve
from math import sin,cos
def f(x):
x0 = float(x[0])
x1 = float(x[1])
x2 = float(x[2])
return [
5*x1+3,
4*x0*x0 - 2*sin(x1*x2),
x1*x2 - 1.5
]

def j(x):
x0 = float(x[0])
x1 = float(x[1])
x2 = float(x[2])
return [
[0, 5, 0],
[8*x0, -2*x2*cos(x1*x2), -2*x1*cos(x1*x2)],
[0, x2, x1]
]

result = fsolve(f, [1,1,1], fprime=j)
print result
print f(result)


              查看评论 回复



嵌入式交流网主页 > 上位机技术 > python > 非线性方程组求解
 函数 计算 方程组

"非线性方程组求解"的相关文章

网站地图

围观()