您现在的位置: 主页 > 电源 > 电源管理 > 一款高效绿色降压型开关电源控制器芯片的设计方案(三) - 模拟
本文所属标签:
为本文创立个标签吧:

一款高效绿色降压型开关电源控制器芯片的设计方案(三) - 模拟

来源: 网络用户发布,如有版权联系网管删除 2018-09-23 

4 测试结果

  该变换器芯片在115μm BCD 工艺下设计和制造。

  图7 为该变换器芯片的显微照片。 整个芯片面积为615mm2 ,芯片下部主要是集成的功率开关和同步整流开关,面积约为2mm2 ,上部为控制器。

  

  测试中应用的Buck 变换器拓扑如图8 示。 设置工作频率为1MHz , 输入电压范围2 ~ 7V , 输出电压115V. 改变分压电阻的取值可改变输出电压,表1 为一组典型应用下的分压电阻取值参考。 电路可承受的负载范围为0~500mA ,足以能满足一般便携式设备的应用需求。

  

  表1 不同输出电压下的分压电阻取值

  

  图9 给出变换器在重载工作条件下的测试结果,负载电流为300mA. 可看到此时变换器以时钟频率稳定工作在PWM 模式,测得输出电压的纹波为516mV. 图10 是变换器工作在最大负载500mA 下的测试结果,可看到变换器依然以恒定频率稳定地工作在PWM 模式下,输出电压纹波为616mV ,满足了设计的负载范围要求。

  PWM工作模式测试曲线

  PWM工作模式测试曲线

  图11 为轻载条件下的测试结果, 负载电流为50mA. 此时变换器工作在Burst 模式,即以时钟频率连续工作若干周期之后又连续关断若干周期。 负载越低,关断的时钟周期就越多。 此时测得输出电压纹波为3912mV. 如前述,纹波电压的大小主要由片内Burst 比较器的迟滞窗口所控制。

  

  图11 Burst 工作模式测试曲线

  图12 所示是负载跳变时输出响应的测试结果。 测试中使负载在50 和300mA 之间跳变,负载变化速率为800mA/μs. 波形显示,Burst 工作模式下的输出电压平均值比PWM 模式下的高20mV ,这是由于在两种模式下采用了不同基准。 在重载跳变到轻载的过程中,过冲电压为32mV ,恢复时间为2μs ,较好地实现了对于过冲电压的抑制,且在两个周期内就可以完成模式转换达到稳定状态,响应速度相当快。

  

  图12 负载跳变测试曲线

  以上即为该变换器的稳态和瞬态测试结果。 表2 是测试结果与仿真结果的比较,测试中不可避免地会有一些测试误差和寄生参数的影响,但总体上还是符合设计指标的,即已达到了预期的设计要求。

  表2 测试结果与仿真结果的比较

  

  图13 是变换器效率测试曲线,可以看到,当变换器工作在PWM/ Burst 多模式调制状态时,由于在轻载条件下间隔地关断功率开关和不必要的耗电模块,使得在整个工作负载范围内变换器的效率基本上保持恒定,反映出Burst 控制模式有效减小了轻载时的开关损耗和静态功耗。 而单纯的PWM 模式工作(Burst 模式被禁止时) ,变换器的效率在重载时还能维持在一定值,但随着负载的减小急剧下降,这反映出轻载时PWM 开关损耗成为主要功耗,也证明轻载时采用Burst 模式对于降低功耗是必要的。

  

  图13 变换器效率曲线

  与通常提高轻载效率的方法相比,本文提出的Burst工作模式, 不仅具有较高的轻载效率, 还体现了与其他方法相比更优的负载调整率,且简化了外围应用电路设计的复杂性。

  5 结语

  本文提出的一种高效率绿色模式降压型集成开关电源控制器的设计方案,其特点是采用了PWM 和Burst 交替的多模式控制,有效提高了变换器的效率, 并成功实现了不同模式间的平滑过渡以及过冲电压的抑制。片上电流检测技术的应用进一步降低了芯片的功耗,提高了电源精度。此外,功率开关和同步整流开关的集成不仅方便了片上电流检测技术的实现, 也简化了应用电路。芯片在115μm BCD 工艺下设计与实现,并得到了预期的测试结果。



              查看评论 回复



嵌入式交流网主页 > 电源 > 电源管理 > 一款高效绿色降压型开关电源控制器芯片的设计方案(三) - 模拟
 

"一款高效绿色降压型开关电源控制器芯片的设计方案(三) - 模拟"的相关文章

网站地图

围观()